Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401262

RESUMO

Hypolimnas misippus is a Batesian mimic of the toxic African Queen butterfly (Danaus chrysippus). Female H. misippus butterflies use two major wing patterning loci (M and A) to imitate three color morphs of D. chrysippus found in different regions of Africa. In this study, we examine the evolution of the M locus and identify it as an example of adaptive atavism. This phenomenon involves a morphological reversion to an ancestral character that results in an adaptive phenotype. We show that H. misippus has re-evolved an ancestral wing pattern present in other Hypolimnas species, repurposing it for Batesian mimicry of a D. chrysippus morph. Using haplotagging, a linked-read sequencing technology, and our new analytical tool, Wrath, we discover two large transposable element insertions located at the M locus and establish that these insertions are present in the dominant allele responsible for producing mimetic phenotype. By conducting a comparative analysis involving additional Hypolimnas species, we demonstrate that the dominant allele is derived. This suggests that, in the derived allele, the transposable elements disrupt a cis-regulatory element, leading to the reversion to an ancestral phenotype that is then utilized for Batesian mimicry of a distinct model, a different morph of D. chrysippus. Our findings present a compelling instance of convergent evolution and adaptive atavism, in which the same pattern element has independently evolved multiple times in Hypolimnas butterflies, repeatedly playing a role in Batesian mimicry of diverse model species.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Borboletas/genética , Elementos de DNA Transponíveis , Mimetismo Biológico/genética , Fenótipo , África , Asas de Animais/anatomia & histologia
2.
Ecol Evol ; 14(2): e11024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414566

RESUMO

Scoring the penetrance of heterozygotes in complex phenotypes, like colour pattern, is difficult and complicates the analysis of systems in which dominance is incomplete or evolving. The African Monarch (Danaus chrysippus) represents an example where colour pattern heterozygotes, formed in the contact zone between the different subspecies, show such intermediate dominance. Colour pattern in this aposematic butterfly is controlled by three loci A, B and C. The B and C loci are closely linked in a B/C supergene and significant interaction of B and C phenotypes is therefore expected via linkage alone. The A locus, however, is not linked to B/C and is found on a different chromosome. To study interactions between these loci we generated colour pattern heterozygotes by crossing males and females bearing different A and B/C genotypes, collected from different parts of Africa. We derived a novel scoring system for the expressivity of the heterozygotes and, as predicted, we found significant interactions between the genotypes of the closely linked B and C loci. Surprisingly, however, we also found highly significant interactions between C and the unlinked A locus, modifications that generally increased the resemblance of heterozygotes to homozygous ancestors. In contrast, we found no difference in the penetrance of any of the corresponding heterozygotes from crosses conducted either in allopatry or sympatry, in reciprocal crosses of males and females, or in the presence or absence of endosymbiont mediated male-killing or its associated neoW mediated sex-linkage of colour pattern. Together, this data supports the idea that the different colour morphs of the African Monarch meet transiently in the East African contact zone and that genetic modifiers act to mask inappropriate expression of colour patterns in the incorrect environments.

3.
Ecol Evol ; 14(1): e10842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235407

RESUMO

Since the classic work of E.B. Ford, explanations for eyespot variation in the Meadow Brown butterfly have focused on the role of genetic polymorphism. The potential role of thermal plasticity in this classic example of natural selection has therefore been overlooked. Here, we use large daily field collections of butterflies from three sites, over multiple years, to examine whether field temperature is correlated with eyespot variation, using the same presence/absence scoring as Ford. We show that higher developmental temperature in the field leads to the disappearance of the spots visible while the butterfly is at rest, explaining the historical observation that hindwing spotting declines across the season. Strikingly, females developing at 11°C have a median of six spots and those developing at 15°C only have three. In contrast, the large forewing eyespot is always present and scales with forewing length. Furthermore, in contrast to the smaller spots, the size of the large forewing spot is best explained by calendar date (days since 1st March) rather than the temperature at pupation. As this large forewing spot is involved in startling predators and/or sexual selection, its constant presence is therefore likely required for defence, whereas the disappearance of the smaller spots over the season may help with female crypsis. We model annual total spot variation with phenological data from the UK and derive predictions as to how spot patterns will continue to change, predicting that female spotting will decrease year on year as our climate warms.

4.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37310934

RESUMO

DNA is compacted into individual particles or chromosomes that form the basic units of inheritance. However, different animals and plants have widely different numbers of chromosomes. This means that we cannot readily tell which chromosomes are related to which. Here, we describe a simple technique that looks at the similarity of genes on each chromosome and thus gives us a true picture of their homology or similarity through evolutionary time. We use this new system to look at the chromosomes of butterflies and moths or Lepidoptera. We term the associated synteny units, Lepidopteran Synteny Units (LSUs). Using a sample of butterfly and moth genomes from across evolutionary time, we show that LSUs form a simple and reliable method of tracing chromosomal homology back through time. Surprisingly, this technique reveals that butterfly and moth chromosomes show conserved blocks dating back to their sister group the Trichoptera. As Lepidoptera have holocentric chromosomes, it will be interesting to see if similar levels of synteny are shown in groups of animals with monocentric chromosomes. The ability to define homology via LSU analysis makes it considerably easier to approach many questions in chromosomal evolution.


Assuntos
Borboletas , Mariposas , Animais , Borboletas/genética , Sintenia , Mariposas/genética , Cromossomos , Genoma , Evolução Molecular
5.
Insect Biochem Mol Biol ; 159: 103983, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380137

RESUMO

The tomato leafminer, Tuta absoluta, is an invasive crop pest that has evolved resistance to many of the insecticides used for its control. To facilitate the investigation of the underpinning mechanisms of resistance in this species we generated a contiguous genome assembly using long-read sequencing data. We leveraged this genomic resource to investigate the genetic basis of resistance to the diamide insecticide chlorantraniliprole in Spanish strains of T. absoluta that exhibit high levels of resistance to this insecticide. Transcriptomic analyses revealed that, in these strains, resistance is not associated with previously reported target-site mutations in the diamide target-site, the ryanodine receptor, but rather is associated with the marked overexpression (20- to >100-fold) of a gene encoding a UDP-glycosyltransferase (UGT). Functional expression of this UGT, UGT34A23, via ectopic expression in Drosophila melanogaster demonstrated that it confers strong and significant resistance in vivo. The genomic resources generated in this study provide a powerful resource for further research on T. absoluta. Our findings on the mechanisms underpinning resistance to chlorantraniliprole will inform the development of sustainable management strategies for this important pest.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Solanum lycopersicum , Animais , Inseticidas/farmacologia , Diamida , Resistência a Inseticidas/genética , Drosophila melanogaster , Difosfato de Uridina
6.
Ecol Evol ; 13(4): e9956, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021082

RESUMO

In butterflies and moths, male-killing endosymbionts are transmitted from infected females via their eggs, and the male progeny then perish. This means that successful transmission of the parasite relies on the successful mating of the host. Paradoxically, at the population level, parasite transmission also reduces the number of adult males present in the final population for infected females to mate with. Here we investigate if successful female mating when males are rare is indeed a likely rate-limiting step in the transmission of male-killing Spiroplasma in the African Monarch, Danaus chrysippus. In Lepidoptera, successful pairings are hallmarked by the transfer of a sperm-containing spermatophore from the male to the female during copulation. Conveniently, this spermatophore remains detectable within the female upon dissection, and thus, spermatophore counts can be used to assess the frequency of successful mating in the field. We used such spermatophore counts to examine if altered sex ratios in the D. chrysippus do indeed affect female mating success. We examined two different field sites in East Africa where males were often rare. Surprisingly, mated females carried an average of 1.5 spermatophores each, regardless of male frequency, and importantly, only 10-20% remained unmated. This suggests that infected females will still be able to mate in the face of either Spiroplasma-mediated male killing and/or fluctuations in adult sex ratio over the wet-dry season cycle. These observations may begin to explain how the male-killing mollicute can still be successfully transmitted in a population where males are rare.

7.
Front Insect Sci ; 3: 1178212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469483

RESUMO

Transposable elements or TEs are well known drivers of adaptive change in plants and animals but their role in insecticide resistance remains poorly documented. This review examines the potential role of transposons in resistance and identifies key areas where our understanding remains unclear. Despite well-known model systems such as upregulation of Drosophila Cyp6g1, many putative examples lack functional validation. The potential types of transposon-associated changes that could lead to resistance are reviewed, including changes in up-regulation, message stability, loss of function and alternative splicing. Where potential mechanisms appear absent from the resistance literature examples are drawn from other areas of biology. Finally, ways are suggested in which transgenic expression could be used to validate the biological significance of TE insertion. In the absence of such functional expression studies many examples of the association of TEs and resistance genes therefore remain as correlations.

8.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210207, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694743

RESUMO

Supergenes maintain adaptive clusters of alleles in the face of genetic mixing. Although usually attributed to inversions, supergenes can be complex, and reconstructing the precise processes that led to recombination suppression and their timing is challenging. We investigated the origin of the BC supergene, which controls variation in warning coloration in the African monarch butterfly, Danaus chrysippus. By generating chromosome-scale assemblies for all three alleles, we identified multiple structural differences. Most strikingly, we find that a region of more than 1 million bp underwent several segmental duplications at least 7.5 Ma. The resulting duplicated fragments appear to have triggered four inversions in surrounding parts of the chromosome, resulting in stepwise growth of the region of suppressed recombination. Phylogenies for the inversions are incongruent with the species tree and suggest that structural polymorphisms have persisted for at least 4.1 Myr. In addition to the role of duplications in triggering inversions, our results suggest a previously undescribed mechanism of recombination suppression through independent losses of divergent duplicated tracts. Overall, our findings add support for a stepwise model of supergene evolution involving a variety of structural changes. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Borboletas , Alelos , Animais , Borboletas/genética , Inversão Cromossômica , Evolução Molecular , Filogenia , Polimorfismo Genético
9.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100331

RESUMO

Milkweed butterflies in the genus Danaus are studied in a diverse range of research fields including the neurobiology of migration, biochemistry of plant detoxification, host-parasite interactions, evolution of sex chromosomes, and speciation. We have assembled a nearly chromosomal genome for Danaus chrysippus (known as the African Monarch, African Queen, and Plain Tiger) using long-read sequencing data. This species is of particular interest for the study of genome structural change and its consequences for evolution. Comparison with the genome of the North American Monarch Danaus plexippus reveals generally strong synteny but highlights 3 inversion differences. The 3 chromosomes involved were previously found to carry peaks of intraspecific differentiation in D. chrysippus in Africa, suggesting that these inversions may be polymorphic and associated with local adaptation. The D. chrysippus genome is over 40% larger than that of D. plexippus, and nearly all of the additional ∼100 Megabases of DNA comprises repeats. Future comparative genomic studies within this genus will shed light on the evolution of genome architecture.


Assuntos
Borboletas , Animais , Borboletas/genética , Genoma , Interações Hospedeiro-Parasita , Cromossomos Sexuais , Sintenia
10.
Biol Rev Camb Philos Soc ; 97(1): 343-360, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34609062

RESUMO

Remote sensing has revolutionised many aspects of ecological research, enabling spatiotemporal data to be collected in an efficient and highly automated manner. The last two decades have seen phenomenal growth in capabilities for high-resolution remote sensing that increasingly offers opportunities to study small, but ecologically important organisms, such as insects. Here we review current applications for using remote sensing within entomological research, highlighting the emerging opportunities that now arise through advances in spatial, temporal and spectral resolution. Remote sensing can be used to map environmental variables, such as habitat, microclimate and light pollution, capturing data on topography, vegetation structure and composition, and luminosity at spatial scales appropriate to insects. Such data can also be used to detect insects indirectly from the influences that they have on the environment, such as feeding damage or nest structures, whilst opportunities for directly detecting insects are also increasingly available. Entomological radar and light detection and ranging (LiDAR), for example, are transforming our understanding of aerial insect abundance and movement ecology, whilst ultra-high spatial resolution drone imagery presents tantalising new opportunities for direct observation. Remote sensing is rapidly developing into a powerful toolkit for entomologists, that we envisage will soon become an integral part of insect science.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Animais , Insetos
11.
Biol J Linn Soc Lond ; 133(3): 671-684, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34539176

RESUMO

Heterosis, Haldane and Bateson-Dobzhansky-Muller effects have been widely documented amongst a range of plants and animals. However, typically these effects are shown by taking parents of known genotype into the laboratory and measuring components of the F1 progeny under laboratory conditions. This leaves in doubt the real significance of such effects in the field. Here we use the well-known colour pattern genotypes of the African monarch or queen (Danaus chrysippus), which also control wing length, to test these effects both in the laboratory and in a contact zone in the field. By measuring the wing lengths in animals of known colour pattern genotype we show clear evidence for all three hybrid effects at the A and BC colour patterning loci, and importantly, that these same effects persist in the same presumptive F1s when measured in hybrid populations in the field. This demonstrates the power of a system in which genotypes can be directly inferred in the field and highlights that all three hybrid effects can be seen in the East African contact zone of this fascinating butterfly.

12.
Commun Biol ; 4(1): 847, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234279

RESUMO

The aphid Myzus persicae is a destructive agricultural pest that displays an exceptional ability to develop resistance to both natural and synthetic insecticides. To investigate the evolution of resistance in this species we generated a chromosome-scale genome assembly and living panel of >110 fully sequenced globally sampled clonal lines. Our analyses reveal a remarkable diversity of resistance mutations segregating in global populations of M. persicae. We show that the emergence and spread of these mechanisms is influenced by host-plant associations, uncovering the widespread co-option of a host-plant adaptation that also offers resistance against synthetic insecticides. We identify both the repeated evolution of independent resistance mutations at the same locus, and multiple instances of the evolution of novel resistance mechanisms against key insecticides. Our findings provide fundamental insights into the genomic responses of global insect populations to strong selective forces, and hold practical relevance for the control of pests and parasites.


Assuntos
Afídeos/genética , Evolução Molecular , Variação Genética , Genoma de Inseto/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Afídeos/classificação , Afídeos/fisiologia , Sequência de Bases , Genômica/métodos , Geografia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Mutação , Filogenia , Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Homologia de Sequência do Ácido Nucleico
13.
Pestic Biochem Physiol ; 169: 104674, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828379

RESUMO

There is an on-going need to develop new insecticides that are not compromised by resistance and that have improved environmental profiles. However, the cost of developing novel compounds has increased significantly over the last two decades. This is in part due to increased regulatory requirements, including the need to screen both pest and pollinator insect species to ensure that pre-existing resistance will not hamper the efficacy of a new insecticide via cross-resistance, or adversely affect non-target insect species. To add to this problem the collection and maintenance of toxicologically relevant pest and pollinator species and strains is costly and often difficult. Here we present Fly-Tox, a panel of publicly available transgenic Drosophila melanogaster lines each containing one or more pest or pollinator P450 genes that have been previously shown to metabolise insecticides. We describe the range of ways these tools can be used, including in predictive screens to avoid pre-existing cross-resistance, to identify potential resistance-breaking inhibitors, in the initial assessment of potential insecticide toxicity to bee pollinators, and identifying harmful pesticide-pesticide interactions.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Animais Geneticamente Modificados , Abelhas , Sistema Enzimático do Citocromo P-450 , Drosophila melanogaster/efeitos dos fármacos
14.
G3 (Bethesda) ; 10(5): 1477-1484, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161089

RESUMO

Meadow brown butterflies (Maniola jurtina) on the Isles of Scilly represent an ideal model in which to dissect the links between genotype, phenotype and long-term patterns of selection in the wild - a largely unfulfilled but fundamental aim of modern biology. To meet this aim, a clear description of genotype is required. Here we present the draft genome sequence of M. jurtina to serve as a founding genetic resource for this species. Seven libraries were constructed using pooled DNA from five wild caught spotted females and sequenced using Illumina, PacBio RSII and MinION technology. A novel hybrid assembly approach was employed to generate a final assembly with an N50 of 214 kb (longest scaffold 2.9 Mb). The sequence assembly described here predicts a gene count of 36,294 and includes variants and gene duplicates from five genotypes. Core BUSCO (Benchmarking Universal Single-Copy Orthologs) gene sets of Arthropoda and Insecta recovered 90.5% and 88.7% complete and single-copy genes respectively. Comparisons with 17 other Lepidopteran species placed 86.5% of the assembled genes in orthogroups. Our results provide the first high-quality draft genome and annotation of the butterfly M. jurtina.


Assuntos
Borboletas , Animais , Borboletas/genética , Feminino , Genoma , Pradaria , Insetos , Fenótipo
15.
PLoS Biol ; 18(2): e3000610, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32108180

RESUMO

Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single 'contact zone' population, involves a putative colour patterning supergene, and co-occurs with infection by the male-killing endosymbiont Spiroplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the 'BC supergene', a broad region of suppressed recombination across nearly half a chromosome, which links two colour patterning loci. Association analysis suggests that the genes yellow and arrow in this region control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within approximately 2,200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male-killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the physically unlinked genomes of host and endosymbiont, with dramatic consequences.


Assuntos
Borboletas/genética , Cromossomos de Insetos/genética , Cromossomos Sexuais/genética , Animais , Borboletas/microbiologia , Evolução Molecular , Feminino , Ligação Genética , Genoma/genética , Haplótipos , Masculino , Fenótipo , Spiroplasma/genética
16.
Insects ; 10(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505824

RESUMO

Danaus chrysippus (L.), one of the world's commonest butterflies, has an extensive range throughout the Old-World tropics. In Africa it is divided into four geographical subspecies which overlap and hybridise freely in the East African Rift: Here alone a male-killing (MK) endosymbiont, Spiroplasma ixodetis, has invaded, causing female-biased populations to predominate. In ssp. chrysippus, inside the Rift only, an autosome carrying a colour locus has fused with the W chromosome to create a neo-W chromosome. A total of 40-100% of Rift females are neo-W and carry Spiroplasma, thus transmitting a linked, matrilineal neo-W, MK complex. As neo-W females have no sons, half the mother's genes are lost in each generation. Paradoxically, although neo-W females have no close male relatives and are thereby forced to outbreed, MK restricts gene flow between subspecies and may thus promote speciation. The neo-W chromosome originated in the Nairobi region around 2.2 k years ago and subsequently spread throughout the Rift contact zone in some 26 k generations, possibly assisted by not having any competing brothers. Our work on the neo-W chromosome, the spread of Spiroplasma and possible speciation is ongoing.

17.
Insects ; 10(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443396

RESUMO

The lenses in compound eyes of butterflies and moths contain an array of nipple-shaped protuberances, or corneal nipples. Previous work has suggested that these nipples increase light transmittance and reduce the eye glare of moths that are inactive during the day. This work builds on but goes further than earlier analyses suggesting a functional role for these structures including, for the first time, an explanation of why moths are attracted to UV light. Using a phylogenetic approach and 3D optical modelling, we show empirically that these arrays have been independently lost from different groups of moths and butterflies and vary within families. We find differences in the shape of nipples between nocturnal and diurnal species, and that anti-glow reflectance levels are different at different wave-lengths, a result thereby contradicting the currently accepted theory of eye glow for predator avoidance. We find that there is reduced reflectance, and hence greater photon absorption, at UV light, which is probably a reason why moths are attracted to UV. We note that the effective refractive index at the end of the nipples is very close to the refractive index of water, allowing almost all the species with nipples to see without distortion when the eye is partially or completely wet and providing the potential to keep eyes dry. These observations provide a functional explanation for these arrays. Of special interest is the finding that their repeated and independent loss across lepidopteran phylogeny is inconsistent with the explanation that they are being lost in the 'higher', more active butterflies.

18.
Pest Manag Sci ; 75(8): 2079-2085, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30785238

RESUMO

BACKGROUND: The tomato leafminer, Tuta absoluta, is an economically important pest of tomatoes in Europe, Africa, Asia and South America. In the UK this species is controlled using an integrated pest management (IPM) programme which incorporates the insecticides spinosad and chlorantraniliprole. In response to UK grower concerns of loss of efficacy of these compounds at certain sites, insecticide bioassays were performed on five populations collected from four commercial glasshouses and potential mechanisms of resistance investigated. RESULTS: We observed high levels of resistance to spinosad in four of the strains, and in two of these tolerance to chlorantraniliprole. Selection of one of these strains with chlorantraniliprole rapidly resulted in a line exhibiting potent resistance to this compound. Sequencing of messenger RNA encoding the nicotinic acetylcholine receptor (nAChR) α6 subunit, target of spinosad, revealed Taα6 transcripts in the spinosad-resistant strains that lack exon 4 and encode a highly truncated protein, or contain a triplet deletion in the predicted first transmembrane domain resulting in the loss of a highly conserved amino acid. Sequencing of the ryanodine receptor gene, encoding the target of diamide insecticides, of the chlorantraniliprole-selected line revealed an amino acid substitution (G4903V) that has been previously linked to diamide resistance in populations of T. absoluta in the Mediterranean and South America. CONCLUSION: Taken together our results reveal emerging resistance in UK populations of T. absoluta to two of the most important insecticides used as part of IPM, with significant implications for the control of this species in the UK. © 2019 Society of Chemical Industry.


Assuntos
Evolução Molecular , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Fenótipo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Combinação de Medicamentos , Inglaterra , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Macrolídeos/farmacologia , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Alinhamento de Sequência , ortoaminobenzoatos/farmacologia
19.
Glob Chang Biol ; 24(4): 1793-1803, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29281766

RESUMO

Trophic interactions are important determinants of the structure and functioning of ecosystems. Because the metabolism and consumption rates of ectotherms increase sharply with temperature, there are major concerns that global warming will increase the strength of trophic interactions, destabilizing food webs, and altering ecosystem structure and function. We used geothermally warmed streams that span an 11°C temperature gradient to investigate the interplay between temperature-driven selection on traits related to metabolism and resource acquisition, and the interaction strength between the keystone gastropod grazer, Radix balthica, and a common algal resource. Populations from a warm stream (~28°C) had higher maximal metabolic rates and optimal temperatures than their counterparts from a cold stream (~17°C). We found that metabolic rates of the population originating from the warmer stream were higher across all measurement temperatures. A reciprocal transplant experiment demonstrated that the interaction strengths between the grazer and its algal resource were highest for both populations when transplanted into the warm stream. In line with the thermal dependence of respiration, interaction strengths involving grazers from the warm stream were always higher than those with grazers from the cold stream. These results imply that increases in metabolism and resource consumption mediated by the direct, thermodynamic effects of higher temperatures on physiological rates are not mitigated by metabolic compensation in the long term, and suggest that warming could increase the strength of algal-grazer interactions with likely knock-on effects for the biodiversity and productivity of aquatic ecosystems.


Assuntos
Cadeia Alimentar , Herbivoria/fisiologia , Rios , Caramujos/fisiologia , Animais , Biodiversidade , Fontes Termais , Temperatura Alta
20.
Cytogenet Genome Res ; 153(1): 46-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130975

RESUMO

The number of sequenced lepidopteran genomes is increasing rapidly. However, the corresponding assemblies rarely represent whole chromosomes and generally also lack the highly repetitive W sex chromosome. Knowledge of the karyotypes can facilitate genome assembly and further our understanding of sex chromosome evolution in Lepidoptera. Here, we describe the karyotypes of the Glanville fritillary Melitaea cinxia (n = 31), the monarch Danaus plexippus (n = 30), and the African queen D. chrysippus (2n = 60 or 59, depending on the source population). We show by FISH that the telomeres are of the (TTAGG)n type, as found in most insects. M. cinxia and D. plexippus have "conventional" W chromosomes which are heterochromatic in meiotic and somatic cells. In D. chrysippus, the W is inconspicuous. Neither telomeres nor W chromosomes are represented in the published genomes of M. cinxia and D. plexippus. Representation analysis in sequenced female and male D. chrysippus genomes detected an evolutionarily old autosome-Z chromosome fusion in Danaus. Conserved synteny of whole chromosomes, so called "macro synteny", in Lepidoptera permitted us to identify the chromosomes involved in this fusion. An additional and more recent sex chromosome fusion was found in D. chrysippus by karyotype analysis and classical genetics. In a hybrid population between 2 subspecies, D. c. chrysippus and D. c. dorippus, the W chromosome was fused to an autosome that carries a wing colour locus. Thus, cytogenetics and the present state of genome data complement one another to reveal the evolutionary history of the species.


Assuntos
Borboletas/genética , Genoma/genética , Cariótipo , Sintenia/genética , Telômero/genética , Animais , Mapeamento Cromossômico , Cromossomos/classificação , Cromossomos/genética , Feminino , Hibridização in Situ Fluorescente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...